Efficient Preconditioning Strategies for the Multilevel Fast Multipole Algorithm

نویسندگان

  • Levent Gürel
  • Tahir Malas
  • Özgür Ergül
چکیده

For the iterative solutions of the integral equation methods employing the multilevel fast multipole algorithm (MLFMA), effective preconditioning techniques should be developed for robustness and efficiency. Preconditioning techniques for such problems can be broadly classified as fixed preconditioners that are generated from the sparse near-field matrix and variable ones that can make use of MLFMA with the help of the flexible solvers. Among fixed preconditioners, we show that an incomplete LU preconditioner depending on threshold (ILUT) is very successful in sequential implementations, provided that pivoting is applied whenever the incomplete factors become unstable. For parallel preconditioners, sparse approximate inverses (SAI) can be used; however, they are not as successful as ILUT for the electric-field integral equation. For a remedy, we employ variable preconditioning, and we iteratively solve the near-field system in each major iteration. However, for very large systems, neither of these methods succeeds to reduce the iteration counts as desired because of the thinning of the near-field matrices for increasing problem sizes. Considering this fact, we develop a preconditioner using MLFMA, with which we solve an approximate system. Respective advantages of these different preconditioners are demonstrated on a variety of problems ranging in both geometry and size.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating the Multilevel Fast Multipole Algorithm with the Sparse-Approximate-Inverse (SAI) Preconditioning

With the help of the multilevel fast multipole algorithm, integral-equation methods can be used to solve real-life electromagnetics problems both accurately and efficiently. Increasing problem dimensions, on the other hand, necessitate effective parallel preconditioners with low setup costs. In this paper, we consider sparse approximate inverses generated from the sparse near-field part of the ...

متن کامل

Inner-outer Preconditioning Strategy for 3d Inductance Extraction Coupling with Fast Multipole Method

This paper presents an efficient preconditioning technique in order to couple Partial Element Equivalent Circuit (PEEC) method with Fast Multipole algorithm (FMM).

متن کامل

Using Fast Fourier Transform in the 3-d Multilevel Fast Multipole Algorithm

In this paper a method is presented how to perform interpolation and anterpolation in both spherical coordinates θ and φ by trigonometric polynomials and the fast Fourier transform (FFT) in the 3-D multilevel fast multipole algorithm (MLFMA). The proposed method is exact in interpolation and anterpolation, and has the high numerical efficiency of FFT. A numerical comparison suggests that the pr...

متن کامل

Hybrid Finite Element and Volume Integral Methods for Scattering Using Parametric Geometry

In this paper we address several topics relating to the development and implementation of volume integral and hybrid finite element methods for electromagnetic modeling. Comparisons with the finite elementboundary integral method are given in terms of accuracy and computing resources. We also discuss preconditioning, parallelization of the multilevel fast multipole method and propose higher-ord...

متن کامل

Combining analytic preconditioner and Fast Multipole Method for the 3-D Helmholtz equation

The paper presents a detailed numerical study of an iterative solution to 3-D sound-hard acoustic scattering problems at high frequency considering the Combined Field Integral Equation (CFIE). We propose a combination of an OSRC preconditioning technique and a Fast Multipole Method which leads to a fast and efficient algorithm independently of both a frequency increase and a mesh refinement. Th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007